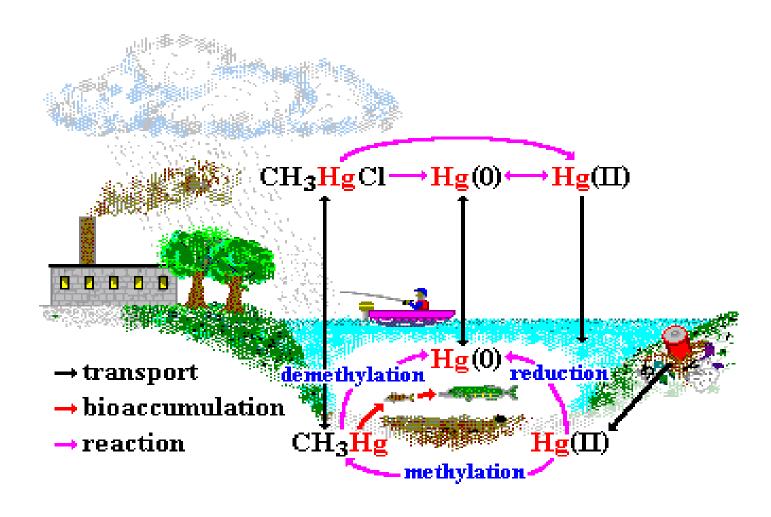
Preparative LC for Hg isotope ratio measurements of Hg species in fish by MC-ICPMS

By John Entwisle and Dmitriy Malinovskiy


Science for a safer world

Mercury cycle in the biosphere

Background

- "Minamata Convention on Mercury" A global and legally binding convention adopted at the UNEP Diplomatic Conference held in October 2013 in Japan.
- A Global Mercury Observation System was set up to monitor levels around the world.
- Hg isotopic signature information of the species can provide extra information on biotransformation and sources.

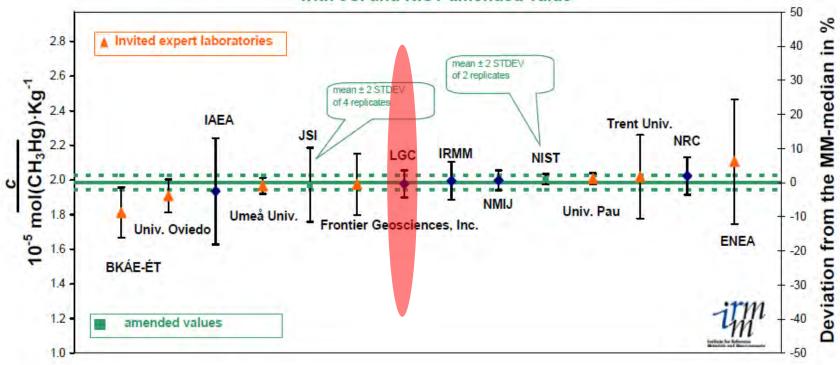
The project -Joint Research Project of the European Metrology Research Programme (ENV51 – MeTra) Work package 3: Traceability for mercury isotopic measurements

http://projects.lne.eu/JRP/MeTra/project-overview/index.asp

History of LGC's contribution to accurate mercury speciation measurement

In 1997 Chris Harrington et al published a paper "Problems Encountered During the Development of a Method for the Speciation of Mercury and Methylmercury by High Performance Liquid Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry"

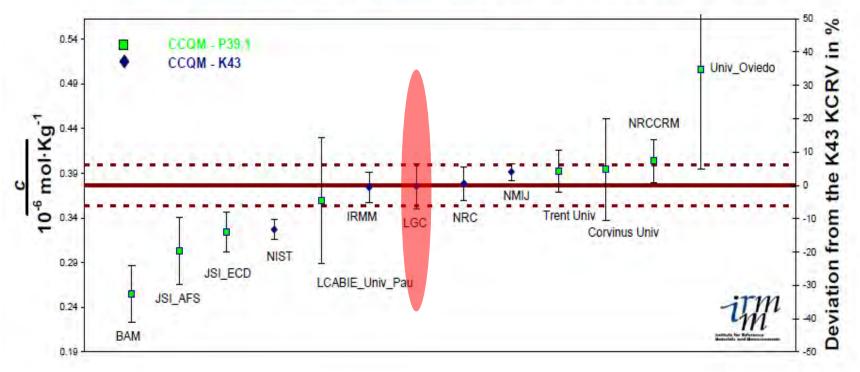
J. Anal. At. Spectrom. 12, 1997, 1053-1056


Solution - 2-mercaptoethanol was used to overcome poor peak shape and LC tailing problems.

2003 - accurate quantitation of Methylmercury in tuna (defatted fish)

CCQM-P39: methylmercury in tuna fish

Mixture Model-median: 1.970 \pm 0.042 \cdot 10⁻⁵ mol (CH3Hg)·Kg⁻¹ ; [$\mu \pm \sigma^* t_s / sqrt(n)$] with JSI and NIST amended value


http://www.bipm.org/utils/common/pdf/final_reports/QM/P39/CCQM-P39.pdf

2005- accurate quantitation of Methylmercury in salmon (oily fish)

CCQM-K43 & P39.1: MeHg in salmon

Mixture Model-median from CCQM-K43: 0.373 ± 0.023 ·10⁻⁶ mol·Kg⁻¹; [μ ± σ*t_s/√n]

http://www.bipm.org/utils/common/pdf/final_reports/QM/K43/CCQM-K43.pdf

Development of the procedure for Hg isotoperatio measurements of Hg species

Steps in the analytical process

- Extraction.
- · LC separation.
- Isolation and collection.
- Minimise dilution and concentrate extract.
- Measurement of isotope ratio using multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) (20ng g⁻¹ minimum concentration)

Fractionation of Hg isotopes

LGC

- Mercury has 7 naturally occurring isotopes
- In nature the maximum isotopic variability is in the order of 0.8%

Mass Number	Natural Abundance		
196	0.15%		
198	9.97%		
199	16.87%		
200	23.10%		
201	13.18%		
202	29.86%		
204	6.87%		

Selection of sulfhydryl group complexing agent used during both extraction and LC.

2-mercaptoethanol

Advantage

Stable

Disadvantage

- Hg²⁺ eluted in tail of larger CH₃Hg with low organic modified
- Volatile
- Toxic (bad odour)

Cysteine

Advantage

- Hg²⁺ eluted before larger
 CH₃Hg.
- Non-volatile
- Non toxic

Disadvantage

Easily oxidises

Extraction

Challenges

- Quantitative extraction of all species.
- Possible transformation of the species (CH₃-Hg ↔ Hg²⁺).
- Need to minimise dilution.
- Loss of complexing ability by air oxidation of sulfhydryl group.

Extraction

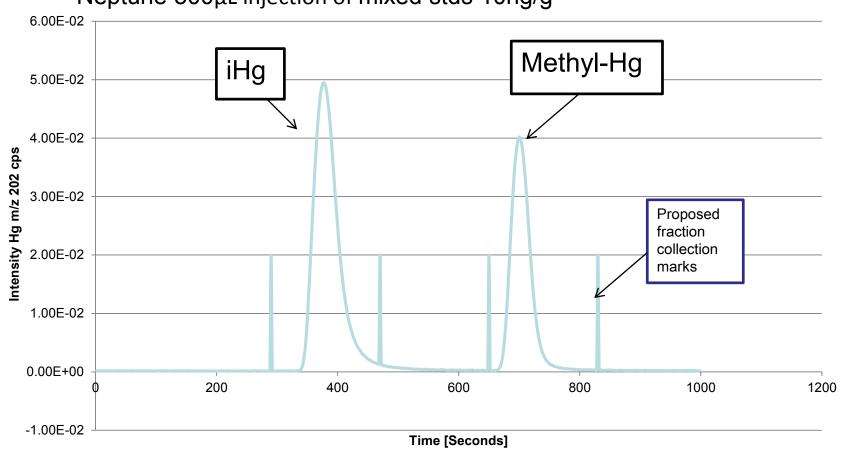
- Recoveries in good agreement with certified values of CRMs e.g. NIST SRM 1947
- Enzymatic hydrolysis of protein matrix.
- Moderate buffered pH of 7.5 and temperature 37°C.
- Released Hg species stabilised in solution with cysteine.
- Sonication decreases extraction time.
- Minimal sample dilution (1:12) incurred
- Confirmed minimal transformation of species by spiking experiments using labelled species (¹⁹⁹Hg²⁺ and methyl²⁰²Hg).

LC separation

Challenges

- Require well resolved discrete peaks with minimal tailing.
- Minor species eluted before major species to avoid a collected fraction contain the tailing end of the peak
- Low organic modifier content of mobile phase will ease compatibility with ICP-MS.
- Isocratic is preferred to avoid complexity.
- Capacity for large injection volumes.

LC separation



- Selection of a reverse phase stationary phase that does not collapses under high aqueous mobile phase.
- Wide bore enables increased loading.
- Selection of cysteine as a complexing reagent as Hg ²⁺ eluents first with this reagent.
- Extracts fully compatible with chromatography enabling large injection volumes.
- 100% aqueous buffered phase mobile phase.

Chromatogram using direct pneumatic nebulisation

Neptune 500µL injection of mixed stds 10ng/g

Concentration of collected fractions

Challenges

- Losses
- Sufficient concentration factor can be obtained.

- Multiple fractions can be collected and combined.
- Freeze drying of collected fraction.
- Use cold vapour [Hg²⁺— Hg⁰] increases signal intensity.

Extract compatibility with cold vapour generation

Challenges

- Methyl mercury will not react to form a volatile species
- Sulfhydryl complexing agent cysteine suppresses vapour generation.

- Microwave digestion with nitric acid (Methylmercury → Hg²⁺⁾
- Cysteine → sulphate which has minimal complexing ability.

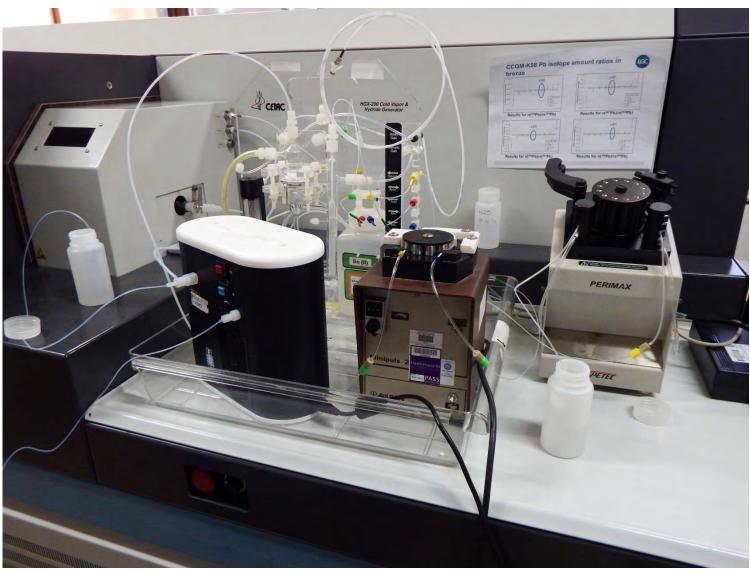
Measurement of isotope ratio analysis

Challenges

- Instrumental bias
- Fractionation from cold vapour generation.

- Thallium added on line to correct for instrument bias using known ²⁰⁵Tl/²⁰³Tl isotope ratio of NIST SRM 997.
- Traceable NIST SRM instrumental fractionation caused by cold vapour generation process.

Control of blank levels


Challenges

- Reagents
- Equipment
- · Laboratory air.

- pH meter probe "Hg free".
- Enzymes derived from microorganism grown in culture media.
- Minimal exposure to lab air.

Setup of MC-ICP-MS with cold vapour

Setup of MC-ICP-MS with cold vapour

Results of Hg isotope ratio measurements for fish tissues

There is no fish tissue reference material certified for the isotopic composition of mercury, either bulk or species-specific. Below are δ -values for Hg isotope ratios for MeHg in fish tissues reference materials certified for Hg concentration (‰ \pm standard deviation at 2σ level).

	¹⁹⁹ Hg/ ¹⁹⁸ Hg	²⁰⁰ Hg/ ¹⁹⁸ Hg	²⁰¹ Hg/ ¹⁹⁸ Hg	²⁰² Hg/ ¹⁹⁸ Hg
BCR 463	1.9 ± 0.2	0.3 ± 0.1	1.9 ± 0.2	0.5 ± 0.1
NIST 1947	4.9 ± 0.2	0.5 ± 0.1	4.4 ± 0.2	1.0 ± 0.1

Conclusion

- Rapid quantitative extraction technique.
- Integrity of Hg species maintained as minimal interconversion incurred.
- Hg²⁺ blank under control.
- No evidence of isotopic fractionation observed.
- Internationally recognised delta value obtained for samples referenced to NIST SRM 3133

Next step

- Apply the procedure to a range of fish types from different locations.
- More precise collect of fractions less concentrating is required.
- Collected more fractions form a sample digest will increase Hg content of final extract resulting in better data.
- Isotopic analysis of minor Hg²⁺ species.

Acknowledgments

- Panayot Petrov
- Heidi Goenaga-Infante

Funding from -Joint Research Project of the European Metrology Research Programme (ENV51 – MeTra) Work package 3: Traceability for mercury isotopic measurements

Questions?