



Learn ... how to Comply with

**New EPA Method 325** 

Fenceline Monitoring of Volatile
Organic Compounds (VOCs) and
Passive Sampling

Lee Marotta, Senior Field Application Scientist, PerkinElmer Jamie Brown, R & D Scientist, MilliporeSigma

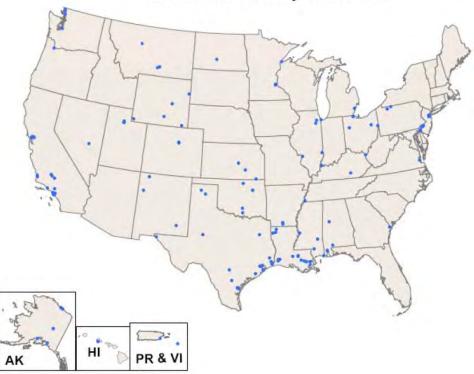
# Welcome



- Method 325
- Overview of the Passive Sampling Tube and Process
- History of the Method 325 Sampling Tube
- Comparison of Passive and Active Sampling
- Operation of Thermal Desorption Process
- Analytical Method Parameters
- Calibration
- Tube Conditioning

#### What is Method 325?




- A new air sampling method for monitoring the fenceline of petroleum refineries
- Specific for monitoring the average air concentration of volatile organic compounds (VOC's), with Benzene being the target compound.
- Samples are collected by using passive sampling that are strategically placed along the fenceline
- The tubes are then sent to a laboratory to be analyzed using thermal desorption (TD) / gas chromatography (GC)



### EPA Method 325: Promulgated, September 29, 2015



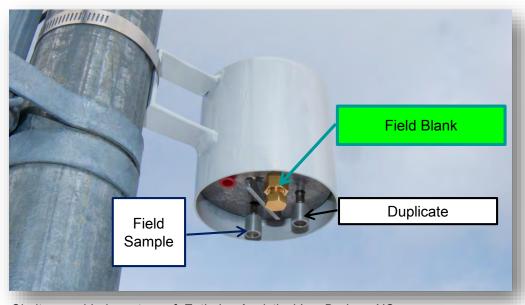
#### **Petroleum Refinery Locations**



Source: http://www3.epa.gov/apti/video/10182011Webinar/101811webinar.pdf

#### EPA Method 325

- 325 A: Deployment and collection of air samples
- 325 B: Analysis of the air samples

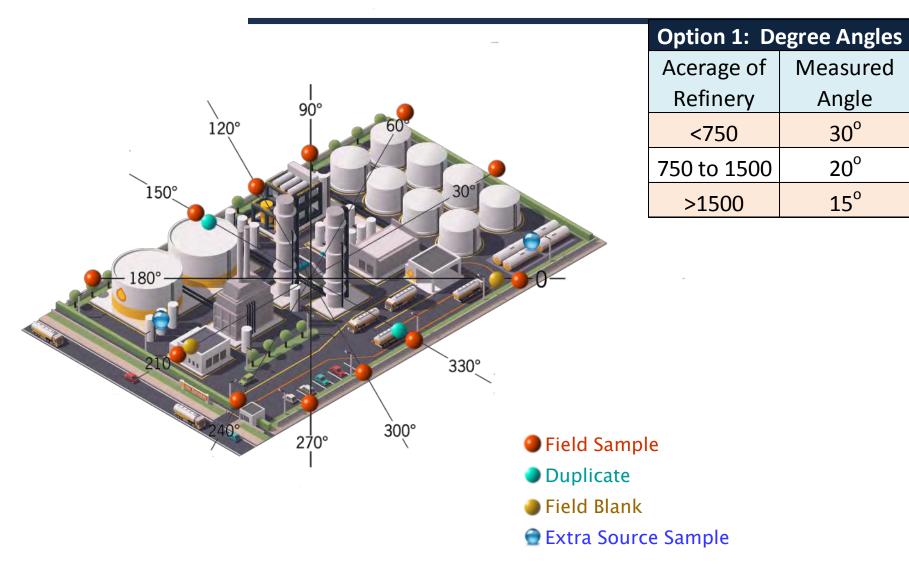

#### Schedule

 Petroleum refineries have 2 years to comply with this new regulation

#### Sample Deployment and Sampling



- Sampling shelters are mounted along the fenceline of the refinery
- The sampling tubes are placed in the shelter vertically with the inlet pointing down




Shelter provided courtesy of Enthalpy Analytical Inc. Durham NC

- The passive sampling tubes are placed in the shelter for 14-days
- After 14-days the tubes are removed, capped, and a new set of tubes are placed in the shelter
- Sampling takes place year round with 26 sampling events per year

#### **Sampling Locations**

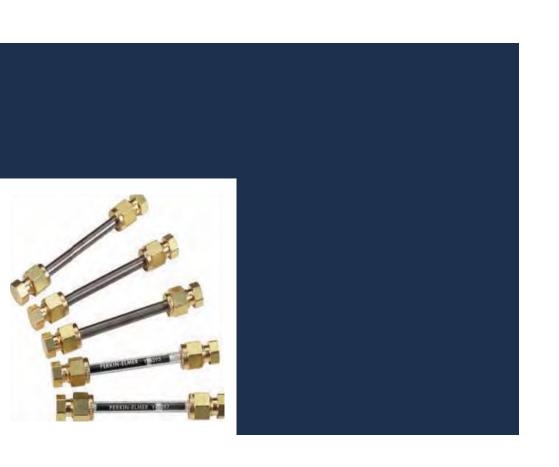




### Minimum Number of Tubes Required



#### **Sample Tubes**


| Acerage of Refinery | Field Samples | Duplicates | Source<br>Samples* | Field Blanks | Total |
|---------------------|---------------|------------|--------------------|--------------|-------|
| <750                | 12            | 2          | ~ 2                | 2            | 18    |
| 750 to 1500         | 18            | 2          | ~3                 | 2            | 27    |
| >1500               | 24            | 3          | ~ 5                | 4            | 36    |

<sup>\*</sup> Extra source samples are required from emission sources within 50 meter of property line.

## **Laboratory tubes**

| Calibration | QC | Laboratory<br>Blanks | Total |
|-------------|----|----------------------|-------|
| 7 2         |    | 1                    | 10    |





# Sampling Tubes for Method 325

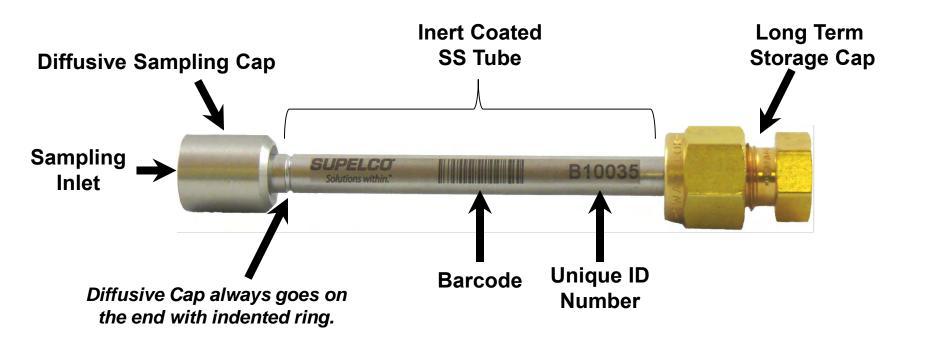
#### The Passive Sampling Tube used for Method 325



- Stainless Steel Tube 3.5" long x ¼" o.d.
- Tubes to have an Inert Coating
- Tube are etched with a unique Barcode, Serial Number, and Adsorbent Packing Identification
- Fixed Air Gap of 1.5cm at the Inlet



#### **Inert Coated Tubes**




Supel™Coat is a deactivation process that produces a ceramic like protective coating to the stainless steel surface.

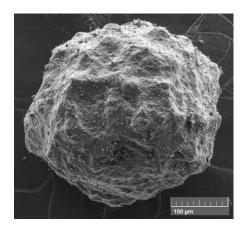
- The coating covalently bonds to the steel surface and protects it from oxidation.
- Creates a reproducible surface on the inner diameter of the tubes.
- The inert coating is stable to 400°C, and withstands multiple uses.

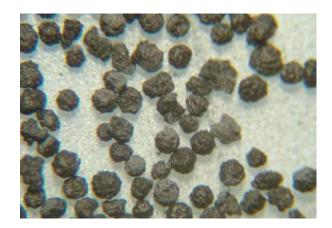
# Overview of the Passive Sampling Tube



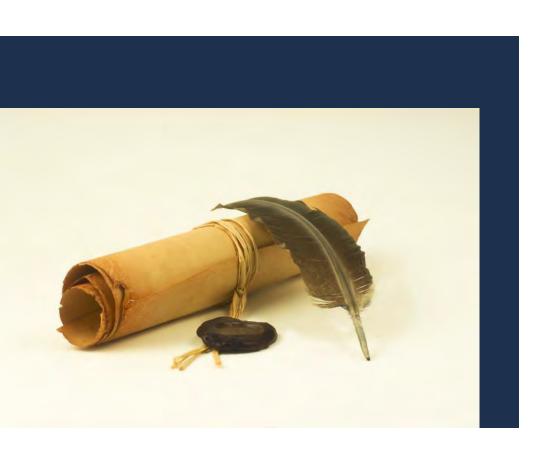


Tube Dimensions: 3.5-inches (89 mm) long x 1/4 inch (6.4 mm) o.d. x 5 mm i.d.


#### Adsorbent used in the Passive Sampling Tube




#### Carbopack X has the most validated uptake rates listed in the method

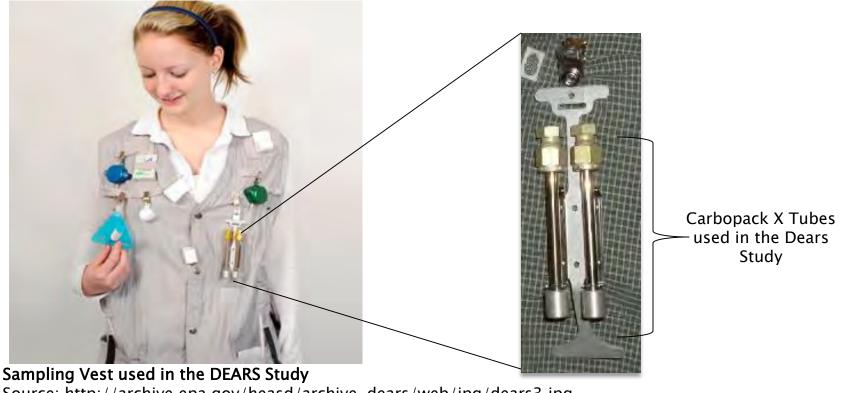

- Hydrophobic low uptake of water vapor
- Retains & releases a wide range of volatile compounds
- It bridges the gap between other weaker graphitized carbon blacks, and the stronger carbon molecular sieves adsorbents

| BET Surface<br>Area   | Density   | Pore Diameter |  |
|-----------------------|-----------|---------------|--|
| 240 m <sup>2</sup> /g | 0.44 g/cc | 100 Å         |  |










# History of Method 325 Sampling Tubes

#### History of the Method 325 Passive Sampling Tube



The development of the sampling tube began in 2003, with the U.S. EPA DEARS Study (Detroit Exposure Aerosol Research Study). 3-year field study (2004 to 2007)



Source: http://archive.epa.gov/heasd/archive-dears/web/jpg/dears3.jpg

#### History of the Method 325 Passive Sampling Tube (Cont.)



#### DCHS Detroit Children's Health Study

- 7-day samples taken during the summer of 2005
- 200 samples analyzed

#### DTREAX Dallas Traffic Related Exposures to Air Toxics

- 7-day samples taken during summer 2006 and winter 2008
- 290 samples analyzed

#### Beaumont EPA Region 6 Air Toxics Monitoring Study

- 7-day samples taken during the fall of 2007
- 90 samples analyzed

#### Moncure Moncure, NC

- 24-hour samples taken during summer and winter of 2007
- 87 samples analyzed





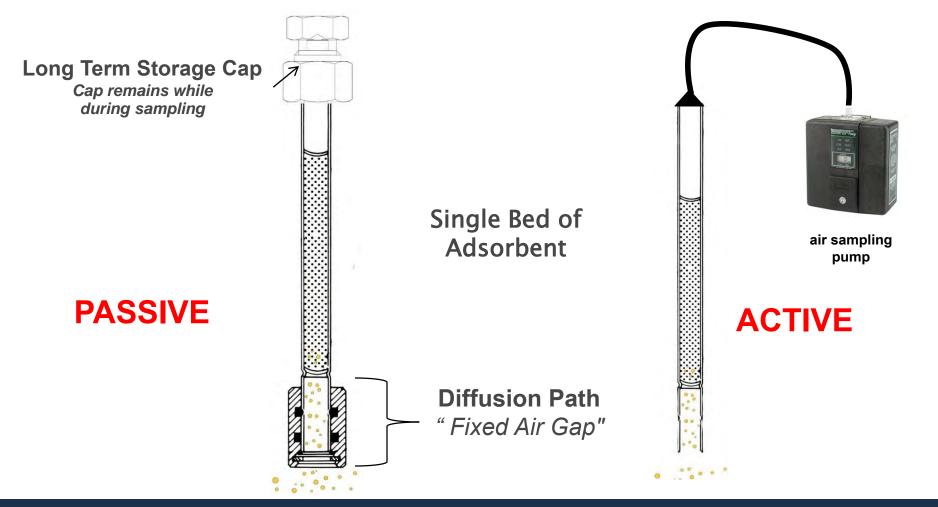
# How the Passive Sampling Tube Works

#### Passive Sampling versus Active Sampling



#### **Passive Sampling**

- Works without and air sampling pump
- Excellent for long term sampling
- · Easy to deploy several tubes at a time
- Limited to a single adsorbent packed in the tube.
- Passive Samplers have fixed uptake rates (sampling rate) unique to the sampler's design, and how each component interacts with the adsorbent.
- (A reason why to use the adsorbents with uptake rates determined by EPA)


#### **Active Sampling**

- Requires an air sampling pump
- Typically used for shorter term sampling.
- More difficult to deploy several tubes at the same time.
- Multiple adsorbents can be packed in the same tube, allowing a larger component range to be collected.

#### Comparison of Passive and Active Sampling



When used for passive sampling, the uptake of compounds of interest relies on the natural movement of the VOC molecules across the concentration gradient of the air gap in the inlet of the tube.



#### Passive Uptake Rates for Carbopack X



Method 325B has validated uptake rates for 19 different VOC's when using Carbopack X

| Compound              | Carbopack X<br>Uptake Rate<br>(mL/min) |
|-----------------------|----------------------------------------|
| Benzene               | 0.67 ± 0.06                            |
| 1,3-Butadiene         | 0.61 ± 0.11                            |
| Carbon tetrachloride  | 0.51 ± 0.06                            |
| Chlorobenzene         | 0.51 ± 0.06                            |
| 3-Chloropropene       | 0.51 ± 0.30                            |
| p-Dichlorobenzene     | 0.45 ± 0.05                            |
| 1,1-Dichloroethane    | 0.57 ± 0.10                            |
| 1,2-Dichloroethane    | 0.57 ± 0.08                            |
| 1,1-Dichloroethene    | 0.57 ± 0.14                            |
| 1,2-Dichloropropane   | 0.52 ± 0.10                            |
| Ethylbenzene          | 0.46 ± 0.07                            |
| Styrene               | 0.50 ± 0.14                            |
| Tetrachloroethene     | 0.48 ± 0.05                            |
| Trichloroethene       | 0.50 ± 0.05                            |
| Toluene               | 0.52 ± 0.14                            |
| 1,1,1-Trichloroethane | 0.51 ± 0.10                            |
| 1,1,2-Trichloroethane | 0.49 ± 0.13                            |
| m,p-Xylene            | 0.46 ± 0.09                            |
| o-Xylene              | 0.46 ± 0.12                            |

Source: Uptake Rates from Method 325B



#### Determining the Concentration collected by the Tubes

$$C_m = \frac{m_{meas}}{U_{NTP} \times t} \times 10^6$$

#### Where:

 $C_m$  = The concentration of target compound in the air sampled ( $\mu g/m_3$ ).  $m_{meas}$  = The mass of the compound as measured in the sorbent tube ( $\mu g$ ).  $U_{NTP}$  = The diffusive uptake rate corrected for local conditions (sampling rate) (mL/min). t = The exposure time (minutes).

Each chemical has it's own diffusive uptake rate, because each chemical interacts with the adsorbent differently.





The Difference Between the Tube Caps Described in Method 325

#### What's the Difference Between the Caps?



#### **Long Term Storage Caps**

Protects the tubes from contamination before and after sampling. PTFE ferrules are used in-place of the metal ferrules



#### **Diffusive Cap**

Placed on the tube (in the field) prior to putting them in the shelter



#### **Analytical Caps**

Seals the tubes on the thermal desorber carousel

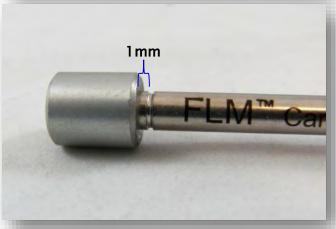


#### Purpose of Diffusive Caps








#### The diffusive cap serves several purposes:

- 1. Defines the diffusive air gap inside the tube
- 2. Prevents air movement within the diffusive air gap during windy conditions
- 3. The screen in the cap prevents insects from entering the tube while sampling




### Diffusive Sampling Caps





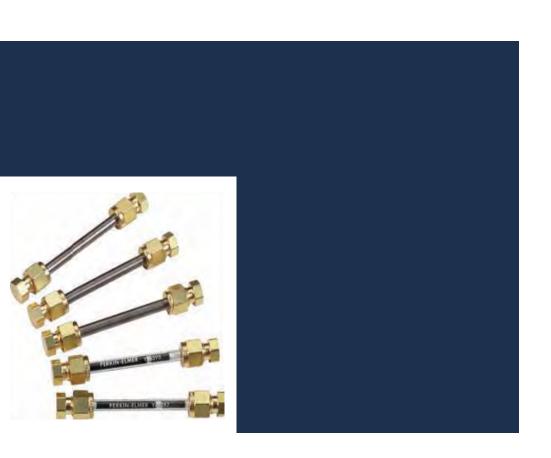
## Long Term Sampling Caps








#### Method 325B specifies the use of a Shipping Container




Example of a non-permeable shipping container



The shipping containers can also serve a gauge to verify the long term sampling caps are seated properly





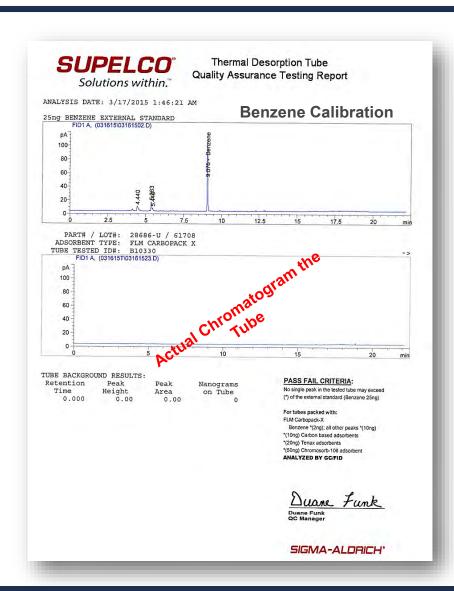
# **Tube Attributes**

#### Sampling Tubes are Reusable



Sampling tubes are reusable. The method states the tubes need to repacked or replaced at least every 2 years or 50 uses, whichever comes first

The most efficient way to re-condition tubes is by using an off-line tube conditioner


#### **Recommendations:**

- Conditioning Temp is 350°C or below
- Use good quality N<sub>2</sub> or He while the tubes are being heated.
   (50 to 100 mL/min) Gas flow should enter through the back of the tube and exist through the sample inlet while conditioning
- Re-conditioning Time: 15 minutes to 2 hours
- Maintain the gas flow until the tubes cools to ambient

#### **Quality Sampling Tubes**



- Choose an adsorbent specified in method 325– this reduces extra validation.
- Tubes with consistent backpressures – assures better performance.
- Preconditioned tubesreduces the time required to condition new tubes before use.
- QC tested assure low benzene background levels.



#### **Barcoded Tubes**



- Each tube is etched with a unique barcode and corresponding ID number
  - The Barcode is permanently "tattooed" on the tube
  - Doesn't require propriety equipment, or special programming
- The Barcodes and ID Numbers are still legible with repeated use





Source: DataLogic PowerScan™ PD9530 Image Based Barcode Scanner



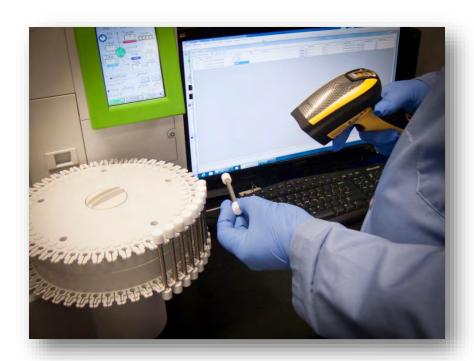


# Solutions for Method 325B

#### Tubes are Sent to the Lab for Analysis






The long term storage caps are removed and PTFE analytical caps are used

#### How the Barcoded Tubes can be used in the Laboratory

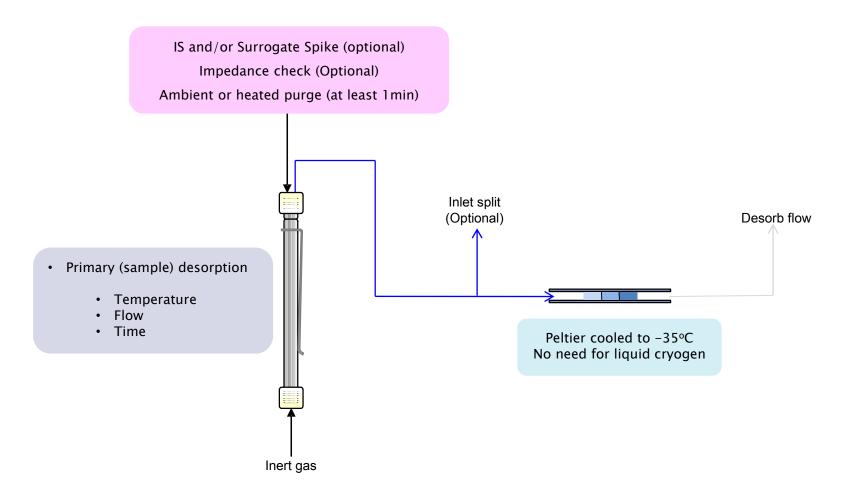


# The serial number from the barcode can be scanned directly into your chromatographic sequence table

- This reduce errors (transposing numbers, wrong number being typed)
- Quick entry for the analysts

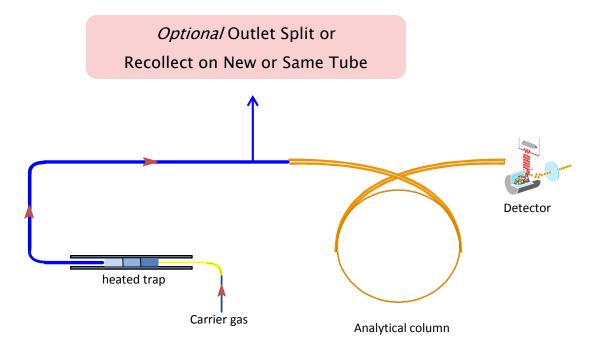







Thermal Desorption:

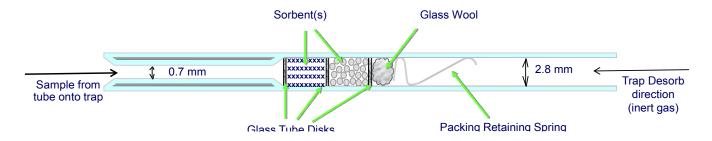
Operation


### Primary (sample) Desorption





# **Secondary Trap Desorption**






#### **Cold Trap**



- > Reduced diameter outlet reduces analyte dispersion or band broadening for narrower, focused peaks
- Trap flow is reversed during desorption to enhance efficiency and ensure recovery of high boiling compounds







Method Requirements

Results

Standard Preparation

## Tune Criterion for 325: Compound 4-bromofluorobenzene (BFB)



- Detectors
  - Mass Spectrometer (MS)
  - FID or PID
- MS Parameters
  - Scan range 35–300

#### **BFB Criteria for Method 325**

| Mass | Ref Mass | Range            | Relative Abudance (%) |
|------|----------|------------------|-----------------------|
|      |          |                  |                       |
| 50   | 95       | > 15% and < 40%  | 20.2                  |
| 75   | 95       | > 30% and < 60%  | 38.4                  |
| 95   | BPI      | 100%             | 100.0                 |
| 96   | 95       | > 5% and <9%     | 6.3                   |
| 173  | 174      | < 2%             | 0.4                   |
| 174  | 95       | > 50% and < 100% | 71.8                  |
| 175  | 174      | > 5% and < 9%    | 6.8                   |
| 176  | 174      | >95% and < 101%  | 95.7                  |
| 177  | 176      | > 5% and < 9%    | 6.0                   |

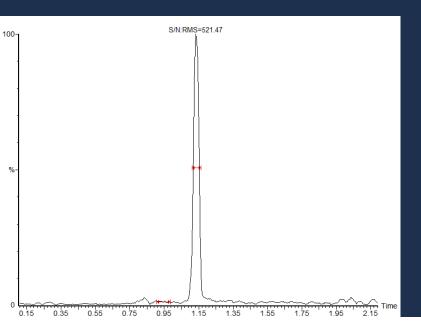
## Standard Spiking Procedure Liquid standards may be used





ATIS (Adsorbent Tube Injector System)




GC inlet w/Liquid Autosampler



"Homemade" Setup

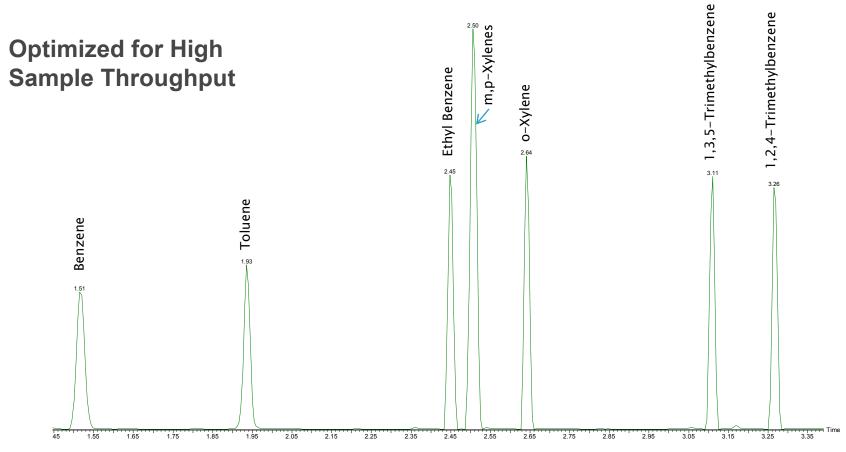


## Example: Benzene from Fast Method Tube spike: 0.2 ng



One System Several Choices:

Fast 325B Setup


Both 325B and TO17 Setup

#### Fast, Resolved Chromatography

#### VOC and SVOC Column



Inlet and outlet splits are enabled

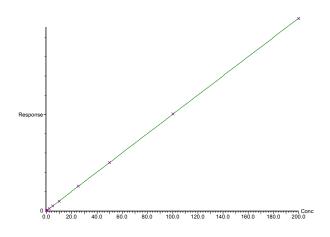


## Performance Using Fast Method (325 and VOC and SVOC)



| Target                | Retention Time<br>(min) | Precision (n=7)<br>% RSD | Linearity<br>(range 0.2 to 200 ng) | S/N @ 0.2 ng |
|-----------------------|-------------------------|--------------------------|------------------------------------|--------------|
| Benzene               | 1.51                    | 1.80                     | 0.9999                             | 520 to 1     |
| Toluene               | 1.93                    | 2.13                     | 0.9999                             | 651 to 1     |
| Ethyl Benzene         | 2.45                    | 3.01                     | 0.9995                             | 877 to 1     |
| m,p-Xylene            | 2.50                    | 2.69                     | 0.9993                             | 1021 to 1    |
| o-Xylene              | 2.64                    | 2.84                     | 1.0000                             | 902 to 1     |
| 1,3,5-Trimethybenzene | 3.11                    | 3.69                     | 0.9999                             | 823 to 1     |
| 1,2,3-Trimethybenzene | 3.26                    | 4.01                     | 0.9999                             | 819 to 1     |

## TO-17 Extended Range and 325 on Same System






Backflush after benzene or stop run after last target of choice eluters

### Calibration of Benzene from Full TO-17 Target Analysis

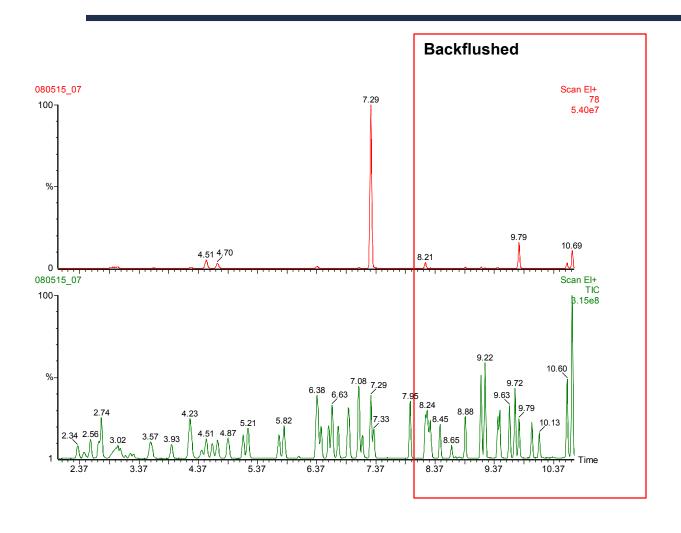




**Benzene Results** 

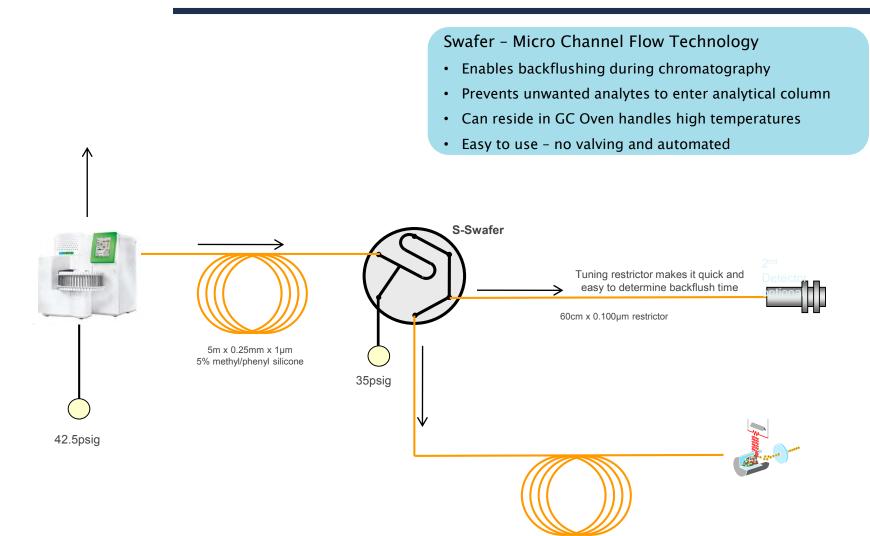
Range 0.05 to 200 µg/m<sup>3</sup>

1 liter sample volume


S/N @ 0.05: 622 to 1

#### Performance of Targets from Soil Gas Method on Soil Vapor Intrusion (SVI) Tubes

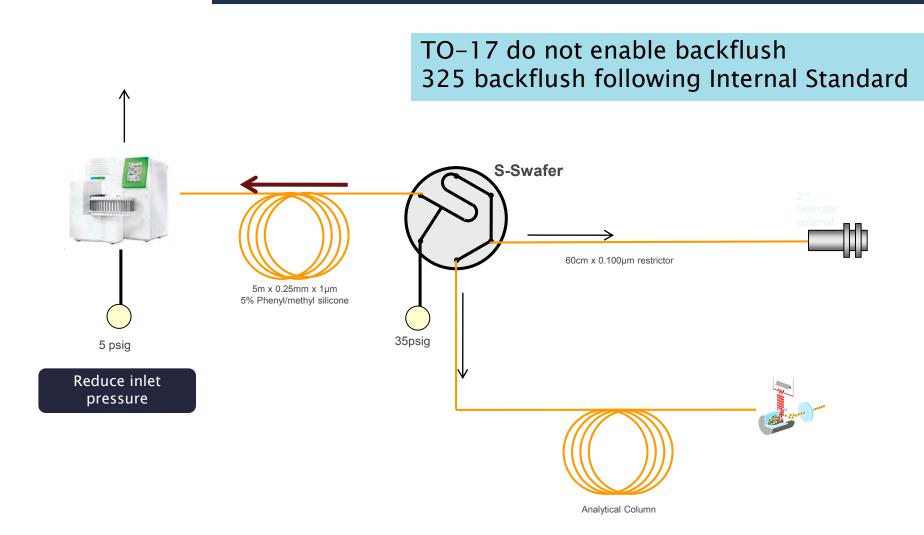
| Class of compound                        | # of analytes | Linearity (0.05 to 250 μg/m <sup>3</sup> )* |        | Precision | Reporting Limit                 |
|------------------------------------------|---------------|---------------------------------------------|--------|-----------|---------------------------------|
| Class of compound                        | per group     | r <sup>2</sup>                              | Ave RF | (n=10)    | S/N at 0.05 μg/m <sup>3</sup> ) |
| Gases                                    | 7             | 0.9994                                      | 9.07   | 7.39      | 530:1                           |
| Aliphatic Hydrocarbons (halogenated)     | 35            | 0.9996                                      | 14.00  | 4.80      | 560:1                           |
| Aromatics (halogenated)                  | 9             | 0.9997                                      | 13.30  | 2.58      | 1350:1                          |
| Aromatics (non-halogenated)              | 14            | 0.9996                                      | 10.27  | 1.91      | 1220:1                          |
| Polynuclear Aromatic Hydrocarbons (PAHs) | 5             | 0.9997                                      | 8.69   | 3.56      | 570:1                           |
| others                                   | 13            | 0.9996                                      | 9.26   | 3.19      | 560:1                           |


## Expanded View and Mass Chromatogram for Benzene





## **Automated Backflushing**






Analytical Column

## Same Configuration for TO-17 and 325





## Internal Standard is Automatically Spiked onto Tubes



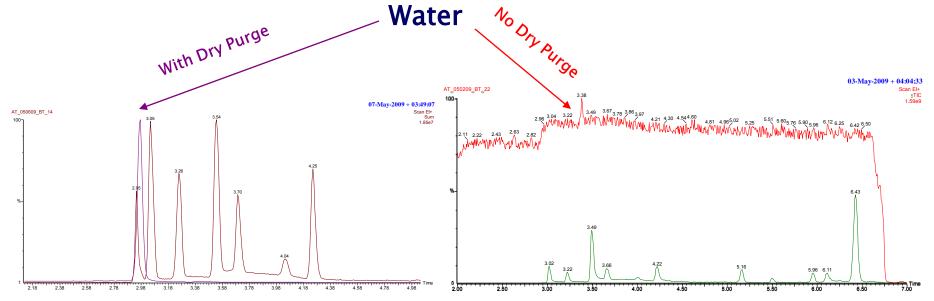
| 325 B one Internal Standard | TO-17 Internal Standards  |  |
|-----------------------------|---------------------------|--|
| Flurobenzene or             | Flurobenzene              |  |
| Chlorobenzene-d5 or         | Chlorobenzene-d5          |  |
| Perfluorobenzene            | 1,4-Difluorobenzene       |  |
|                             |                           |  |
| 4-Bromoflurobenzene (BFB)   | 4-Bromoflurobenzene (BFB) |  |

#### Precision for automated injection of Internal Standards

| Internal Std | Fluorobenzene | 1,4 Difluorobenzene | Chlorobenzene-d <sub>5</sub> | BFB  |
|--------------|---------------|---------------------|------------------------------|------|
| Quant Ion    | 96            | 114                 | 117                          | 95   |
| %RSD (n=15)  | 1.34          | 1.29                | 0.53                         | 0.98 |






Let's Deal with Moisture

## Example from Soil Gas (10 liter sample volume. 85% humidity)



- Mass Spectrometer
  - Signal quenching
  - Increased maintenance
- > Chromatography
  - Can effect peak shapes





## Tube Conditioning and Off-line Dry Purge





- For soil gas, the automated tube condition can be used to perform an off-line dry purge at ambient temperatures
- For 325, a short instrument dry purge should be sufficient

#### **Additional Comments**



- Field and Laboratory Blanks
- 9 μg/m³ of Benzene is the Action Level
- Benzene artifact on tube
  - $\circ \le 0.2 \text{ ppbv} = \le 0.64 \text{ } \mu\text{g/m}^3$

## Summary



- Using Carbopack X enables utilizing uptake rates calculated by EPA for enhanced accuracy
- Passive sampling tubes are easy to deploy
- The method has been optimized for enhanced sample throughput while maintaining excellent performance
- Meets or is better than EPA method criteria
- We are here to help

### Please contact us we are here to help!



#### **Contact Info:**

#### PerkinElmer:

Lee.marotta@perkinelmer.com

## Millipore Sigma:

Jamie.Brown@sial.com Kristen.Schultz@sial.com





 View the complete portfolio of Air Monitoring products, find product literature, and more at: www.perkinelmer.com; www.perkinelmer.com/epa325; www.sigmaaldrich.com/airmonitoring

# TurboMatrix 650 Thermal Desorber / SQ 8 GC/MS along with FLM $^{TM}$ Carbopack $\boldsymbol{X}$



#### Solution for Measuring Toxic Compounds in Air



## Thank you!

???

<u>lee.marotta@perkinelmer.com</u> <u>Jamie.Brown@sial.com</u>