
Flow Injection Single Particle
Inductively Coupled Plasma Mass
Spectrometry: A Simplified Approach
for the Characterization of MetalBased Nanoparticles

Ram P. Lamsal, Gregory Jerkiewicz and Diane Beauchemin
Department of Chemistry

Nanoparticles (NPs):

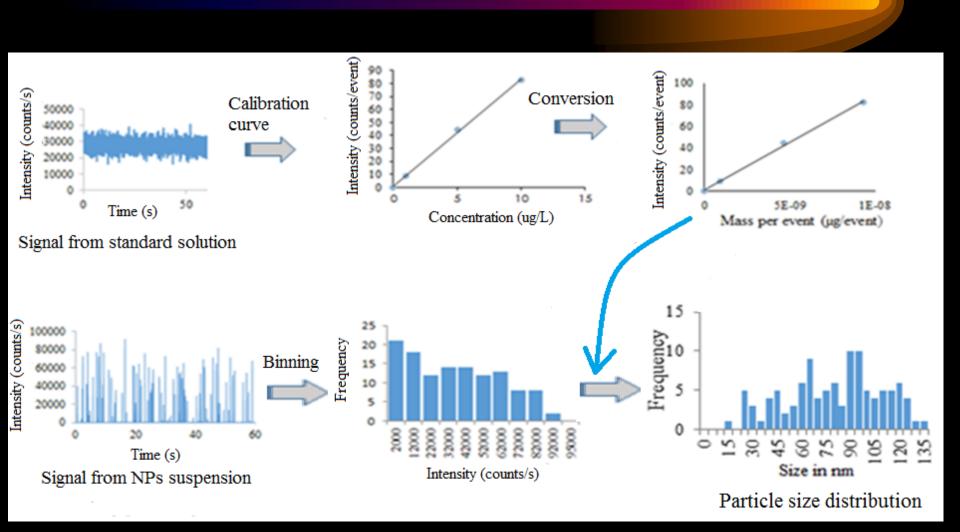
- □ Possess at least one dimension between 1 and 100 nm.
- ☐ Have significantly larger specific surface area than their bulk solid or dissolved form counterparts.
- ☐ Have numerous applications
 - Cosmetics
 - Textiles
 - Energy production and storage

Use of NPs in fuel cells

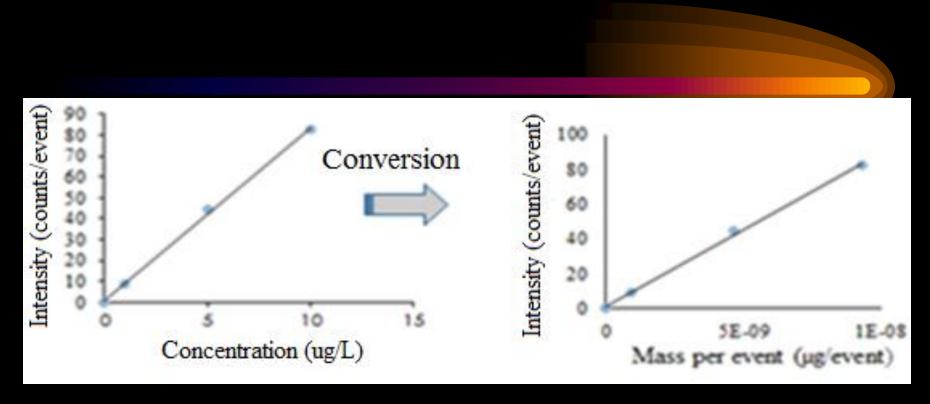
- ☐ Efficiency of fuel cells may be improved by increasing the electrochemically active surface area through the loading of NPs on a substrate.
- □ Need to:
 - determine the NPs mass concentration
 - estimate NPs' size and size distribution.

Single particle inductively coupled plasma mass spectrometry (spICPMS)

- ICPMS operated in time-resolved analysis mode can detect individual particles
- ☐ Introduction of very dilute suspension of NPs
 - ☐ At the most one particle per droplet in the aerosol produced by nebulisation
 - signal intensity spike generated for each individual particle following vaporization, atomization and ionization in the plasma.


Use of spICPMS information

- □ Steady-state signal → dissolved metal concentration
- ☐ Frequency of pulses → particle number concentration
- \square Intensity of each pulse \rightarrow particle mass
 - ☐ If the geometry of particles is known, then particle size can also be determined using the density of the bulk metal
 - ☐ For Au NPs, assuming a spherical geometry and full ionization of all NPs in the plasma


Discriminating NPs from the background

- Multiply signal intensity (in counts/s) of each measurement point by dwell time.
- Compute average intensity (μ) and standard deviation (σ) for the whole data set
 - all data points greater than $(\mu + 5\sigma)$ collected as NP events and removed from the data set.
- Process repeated with new (μ+ 5σ) of remaining data until no more particle events could be identified
 - remaining data correspond to the background signal, unresolved particles and dissolved analyte fraction.

Steps involved in spICPMS

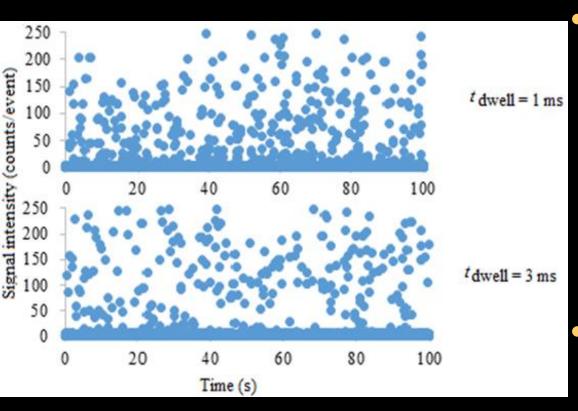
Requirements for the conversion step

Mass per event = concentration × uptake rate × sample introduction efficiency × dwell time.

- Sample introduction efficiency must measured
- Sample uptake rate must be measured

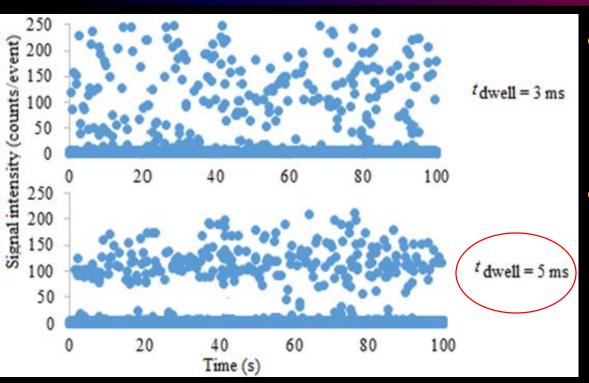
Determination of sample introduction efficiency

- □ Load a known mass of dry silica gel into a 1-mL micropipette tip (cut so as to match the inner diameter of the torch injector)
- Attach it to the spray chamber to trap the aerosol exiting it.
- ☐ The ratio of the mass of solution trapped to that aspirated = sample introduction efficiency (or transport efficiency)
 - \Box 5.2 ± 0.2% (n=3)

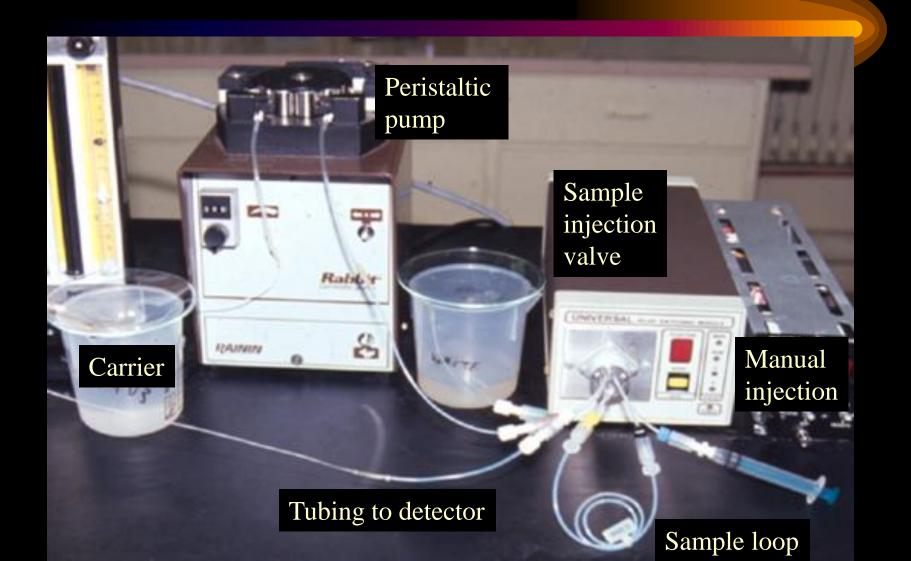

Measurement of sample uptake rate

- Measure the time taken to pump a known volume of solution to the nebulizer
- □ Sample uptake rate = aspirated volume/time taken (in mL/min).

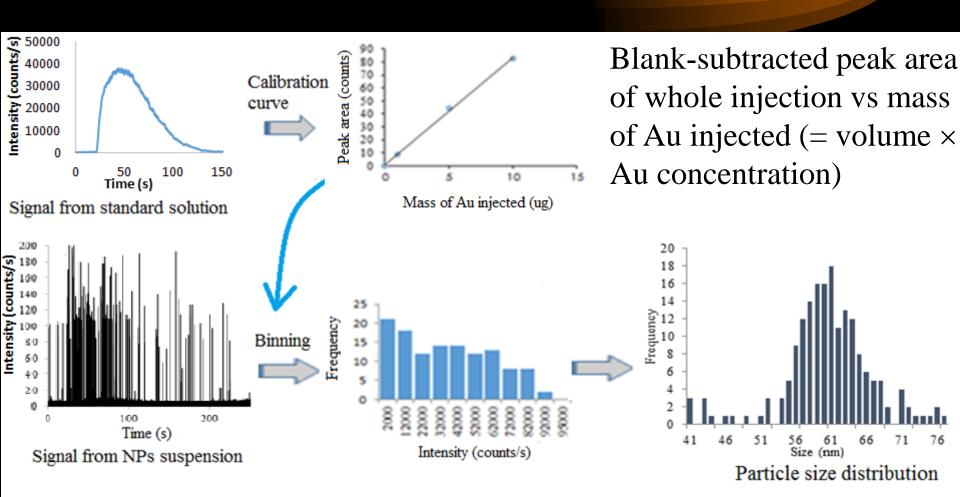
Operating conditions


Parameter	Value
ICPMS instrument	Varian 820MS
Nebulizer	MicroMist concentric
Spray chamber	Peltier-cooled double-pass (0°C)
Ar plasma gas flow rate	18 L/min
Ar auxiliary gas flow rate	1.80 L/min
Ar sheath gas flow rate	0.04 L/min
Nebulizer gas flow rate	0.98 L/min
Sample uptake rate	0.25 mL/min
Sampling depth	5.5 mm
RF power	1.40 kW
Dwell time	5 ms
Monitored signal	¹⁹⁷ Au ⁺

Effect of dwell time on the timeresolved signal from 60-nm Au NPs


- 1-ms dwell time
 - Lower mean intensities
 - –Higher number of NPs
 - Partial measurementof ion clouds from NP
- Intensity from a NP should not depend on dwell time

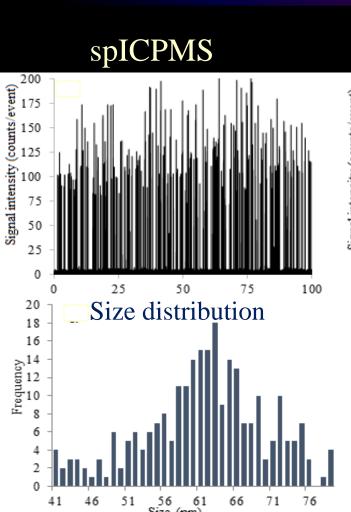
Effect of dwell time on the timeresolved signal from 60-nm Au NPs



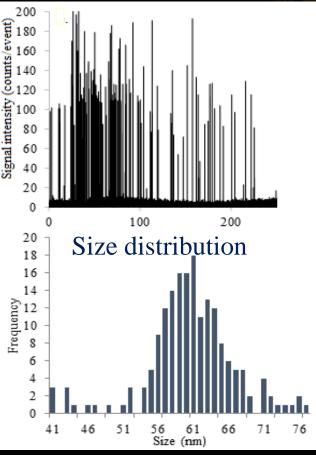
- Frequency of signal splitting drops at longer dwell time
- However, particles coincidence is more likely at longer dwell time
- Dwell time must be selected to minimize both NP splitting and coincidence of NPs
 - 5 ms resulted in relatively stable NPs signals

Example of flow injection set-up

Steps involved in FI-spICPMS


Sample used for this study

- Au NPs (nanoComposix (San Diego, CA, USA)
 - particle number concentration = 2.3×10^{10} particles/mL
 - solution concentration = 52 ppm Au
- Diluted 1,000,000 fold
 - Au NPs number concentration = 23,000 particles/mL
 - solution concentration = 52 ppt Au


Sample handling

- Commercial Au NPs suspension was diluted with high-purity water in polypropylene vials on the day of the analysis.
- Immediately prior to analysis, the diluted suspensions were sonicated for 10 min to ensure full dispersion of the NPs.
 - A few small blocks of ice were added to the ultrasonic bath to prevent temperature increase during sonication.

Comparison of spICPMS and FIspICPMS for 60-nm Au NPs

FI-spICPMS

- With FIspICPMS, no measurement of:
- -sample introduction efficiency
- -sample uptake rate

Effect of mass concentration on the measured diameter of 60-nm Au NPs

Mass	Average diameter (nm)		Reference
concentration (ng/L)	spICPMS	FI-spICPMS	value* (nm)
50	61.8 ± 0.9	60.2 ± 0.6	60.6 ± 6.0
100	64.4 ± 4.8	64.0 ± 4.2	
175	67.2 ± 7.3	66.4 ± 5.6	

- Similar results with FI
- Better precision at greater dilution
- Less NPs coincidence

[•] Detection limit (3 σ , n=10): 20 nm with or without FI

Determination of NPs number concentration by spICPMS

- Sampling time = 100 s
- Number of NPs detected during 100 s = 421
- Number of NPs in 1 min = 253
- NPs number concentration = $f(I_p)/(q_{liq} \times TE)$ = $253/(0.25 \times 0.05) = 20240$ particles/mL
 - $\overline{-f(I_p)} = \overline{frequency of NP} events (pulses/min)$
 - $-q_{liq}$ = sample uptake rate = 0.25 mL/min
 - -TE = transport efficiency = 0.050

Determination of NPs number concentration by FI-spICPMS

- 50-µL injection used to determine the transport efficiency
 - # of detected particles in 50 μ L = 73
 - Expected # of particles in 50 μ L = 23000 \times 0.1 = 1150
 - TE = transport efficiency = 132/2300 = 0.063
- 100-µL injection used to determine the NPs number concentration
 - # of detected particles in 100 μ L = 132
 - NPs number concentration = 132/0.063 = 2095

60-nm Au NPs number concentration by spICPMS and FI-spICPMS (n=3)

Method	Transport efficiency		Recovery (%)
spICPMS	0.052 ± 0.002	$(2.011 \pm 0.045) \times 10^{10}$	87.5 ± 2.0
FI-spICPMS	0.057±0.006	$(2.260 \pm 0.080) \times 10^{10}$	96.2 ± 3.5

- Better recovery with FI
- No measurement of sample uptake rate
 - o Eliminates one source of error

Additional feature of FI-spICPMS

- Verification of mass balance can readily be done with the injection of a standard of NPs
 - With 100- μ L loop: 5.20 × 10⁻⁶ μ g of Au injected
 - $-(4.97 \pm 0.05) \times 10^{-6} \,\mu g$ of Au measured
 - Recovery = 95.6 ± 1.0 %
- With spICPMS, mass balance is time-dependent
 - Assumes no change in sample uptake rate
- No need to know the sample uptake rate with FIspICPMS

Conclusions

- FI-spICPMS provides similar results to spICPMS without requiring a measurement of the sample uptake rate.
- If only the mass of particles is desired, then measurement of the sample introduction efficiency is also not required with FI-spICPMS

ACKNOWLEDGEMENTS

 This research was conducted as part of the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen's University and supported by Grant No. RGPNM 477963-2015 under the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Program.