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• From 2010 to 2013 worldwide 

revenue from NEPs grew from 

$339 billion to > $1 trillion1

• Multitude of nano-enabled 

products (NEPs)2 that incorporate 

engineered nanomaterials (ENMs) 

to improve desired functionality

Motivation
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Source: Roco, M.C. Journal of Nanoparticle Research, 2011

1 www.nsf.gov
2 Progress Review on the Coordinated Implementation of the NNI 2011 Research Strategy, 2014

Nanotechnology industry 

continues to grow1
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Release of ENMs into the environment 

during product lifecycle is inevitable

• The risks posed to human health and 

the environment due to ENM release are 

difficult to predict as a result of limited 

information regarding: quantity, release 

rates, stability, transport, and fate

Source: www.epa.gov

Applications Implications



Analytical Challenges
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We expect: We need analytical methodology that is:

Low environmental concentrations Sensitive down to ng/L range

Potentially high background of dissolved 

(i.e., ionic) species

Capable of element-specific quantification of both 

ions and nanoparticles

Complex environmental matrices Capable of dealing with matrix effects

Complex particle structures in part due to 

NP transformations upon release

Capable of element-specific characterization and 

quantification of “composite” particles

Interfering naturally occurring NPs (NNPs) Able to distinguish between ENPs and NNPs

Single particle ICP-MS  +  Field-Flow Fractionation

Development of nano-metrology to enable accurate and reproducible 

measurements of ENMs1 is essential

1 Progress Review on the Coordinated Implementation of the NNI 2011 Research Strategy, 2014
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spICP-MS
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single particle Inductively Coupled Plasma Mass Spectrometry

uses the inherent sensitivity and elemental specificity of ICP-MS to detect pulses 

of ions that result from the sequential introduction of NPs into the instrument 

Conventional ICP-MS 

Single particle ICP-MS 
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Overview of spICP-MS Data Processing
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• Calibration curve of 

dissolved 

concentration vs. 

intensity

•Use transport 

efficiency to relate 

intensity to mass

• Nanoparticle gives 

pulse of intensity above 

background

• Convert pulse 

intensity to mass, 

then to diameter



Collection of 

Single Particle 

ICP-MS papers

ABC, June 2016
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FFF
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Field Flow Fractionation

uses an applied field (i.e., force) to separate particles based on particle mass, 

hydrodynamic size, and/or density, depending on the type of field applied 

Asymmetric Flow FFF (AF4) separates based on hydrodynamic size

Centrifugal FFF (CFFF) separates based on buoyant mass

Source: www.postnova.com
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ASYMMETRICAL FLOW FFF

Where:

b0 is the channel breadth at the inlet triangle

bL is the channel breadth at the outlet triangle

z’ is the position of the focusing band

Leff is the effective channel length

Aeff is the effective channel cross section area

y is the tapered area

Field due to 

Fluid flow

to 

detector
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CENTRIFUGAL FFF



Modified from D. Mitrano et al, 2014
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Challenge: We are not analyzing pristine NPs

NPs will likely be transformed from their pristine state

Nowack et al, 2012

Heteroaggregation



Au-PS-b-PAA

Environmentally Transformed NPs            Model Particles
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Transformation:  Dissolution

Mitrano et al., Environ Sci:Nano, 1, 248-259, 2014



Transformation in natural waters
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 Trent University Lens Project (Chris Metcalf & Lindsay 

Furtado)

 Lake 239 at the Experimental Lakes Area (ELA) in Ontario, 

Canada

 Single addition of 80 mg/L, 50 nm PVP capped Ag ENP

 Mesocosms (2 m diameter x 2m depth). Two used for in 

study.

 Samples analyzed by AF4-ICPMS and spICPMS

 Furtado et al 2014, Environmental Chemistry 11, 419-430



Dissolution vs pulse intensity (spICP-MS)

100 nm tannic acid Ag NPs; 50 ng/L

Decrease pulse intensity correlates with decreasing 

particle diameter
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Surface Transformations: Investigation of NP Structure
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82.7 nm NP

48.2 nm 

Au-core

17.2 nm Ag-shell 

(76.8 nm equivalent 

spherical diameter)

100.2 nm

hydrodynamic size

8.8 nm thick 

PVP-shell

Manufacturer-reported characteristics

Size by TEM.  Concentrations by ICP-MS.

What if this was an unknown particle?

Can we determine composition and structure?



spICP-MS analysis
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spICP-MS: 197Au spICP-MS: 107Ag

Suggests but does not confirm bimetallic NP

2.0x1011 NPs/mL2.0x1011 NPs/mL =



AF4-ICP-MS analysis
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197Aunorm.signal ~ 107Agnorm.signal

Bimetallic particle is highly likely
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In Milli-Q water, NP sizes are 

relatively constant.

In 1% aqua regia, Ag NP size 

decreases from 0-3 hours, until 

below size detection limit.

Au NP size is constant until 

8 hours.

Core-shell structure is 

revealed.

Au-Ag NP dissolution in Milli-Q water and 1% (v/v) aqua regia was observed 

using spICP-MS over 28 hours.
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Polymer nanocomposite (PNC) is a

material with NPs dispersed in a 

polymer (or copolymer) matrix.

Heteroaggregation/Organic matter coatings
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Source: 

www.fch.vutbr.cz/cs/laboratore/kompozity/nanoc

omposites.html

Duncan, T.V. et al. ACS Appl. Mater. Interfaces, 2015

Inorganic NP

Polymer

Model particle

100 nm 100 nm

Au-PS-b-PAA Compsite NP: Use as a 

model for heteroaggregates and coated 

NPs

One or more gold NPs (40-50 nm) 

surrounded by a thick polystyrene-

polyacrylic acid block copolymer shell 

(~10-175 nm)



Methodology
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Characterize Au-citrate Precursor NP
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200 nm

TEM spICP-MS

Mean size (nm)

TEM = 51

AF4 = 45.9 ± 1.2 

CFFF = 41.4

spICP-MS = 41.9 ± 0.2

AF4 and CFFF



Au-PS-b-PAA NP: spICP-MS

23

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

 Au-citrate NP

 N
NP

 Marker (1, 2, ...13 Au NPs)

         N
NP

 Integration Range

spICP-MS 
197

Au:

Mode diameter = 41.0 ± 1.8 nm

Mean diameter = 41.9 ± 0.2 nm

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
c
y

Mass (ug x 10^-9)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

 Au-PS-b-PAA NP

 N
NP

 Marker (1, 2, ...13 Au NPs)

         N
NP

 Integration Range

spICP-MS 
197

Au:

Mode diameter = 52.3 ± 0.8 nm

Mean diameter = 63.2 ± 0.4 nm

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
c
y

Mass (ug x 10^-9)

The increase in mean Au size for the 
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Au-PS-b-PAA NP AF4 Separation
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AF4 separates by hydrodynamic size
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AF4 Fractions by spICP-MS
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As the hydrodynamic size increases:

• Frequency of larger Au mass increases

• % containing 1-2 Au NPs decreases

• % containing ≥ 8 NPs NPs increases
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Au-PS-b-PAA NP CFFF Separation
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AF4 separates by buoyant mass

By matching the density of the CFFF carrier fluid with the PS-b-PAA density, 

the buoyant mass is only the incorporated Au NP mass
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CFFF Fractions by spICP-MS
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The Au mass distribution shifts to 

larger Au masses with increased 

retention time.

Little or no detection of single Au 

NPs at longer retention time
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Information gained from various methods
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Composite 

particles 

containing ≥ 1 

Au NPs are 

present.

spICP-MS

mass and

number conc.
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hydrodynamic 

size

CFFF

buoyant mass

TEM

structure and 

size

Multiple Au-cit

NPs are 

incorporated 

into the 

composite NPs.

The maximum 

number of 

incorporated 

Au-cit NPs 

increases as 

hydrodynamic 

size increases.

The Au mass 

distribution 

shifts to higher 

masses as 

CFFF retention 

time increases.



Summary
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- Combining spICP-MS with FFF provides a detailed 

characterization of complex nanomaterials and NP 

mixtures

- Combined with dissolution methods they can reveal 

structure 

- The methods can provide insight into the transformations 

and fate of NPs introduced into the environment

- Further work on method development is needed to fully 

investigate NPs in environmental samples
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