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Motivation

Applications Implications

Nanotechnology industry Release of ENMs into the environment
continues to grow? during product lifecycle is inevitable

* From 2010 to 2013 worldwide e 1,5
revenue from NEPs grew from A Q
$339 billion to > $1 trilliont
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Source: Roco, M.C. Journal of Nanoparticle Research, 2011
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rates, stability, transport, and fate
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Analytical Challenges

Development of nano-metrology to enable accurate and reproducible
measurements of ENMs! is essential

We expect: We need analytical methodology that is:

Low environmental concentrations Sensitive down to ng/L range

Potentially high background of dissolved Capable of element-specific quantification of both
(i.e., ionic) species ions and nanoparticles

Complex environmental matrices Capable of dealing with matrix effects

Complex particle structures in part due to | Capable of element-specific characterization and
NP transformations upon release quantification of “composite” particles

Interfering naturally occurring NPs (NNPs) | Able to distinguish between ENPs and NNPs

Single particle ICP-MS + Field-Flow Fractionation

1 Progress Review on the Coordinated Implementation of the NNI 2011 Research Strategy, 2014 ‘ COLORADOSCHOOLOFMINES
|
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ICP-MS Analysis for Nanoparticle Characterization

Sensitive: detection
limits at low part per
trillion levels (ng/L)

Selective: element
specific detection
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SpICP-MS

single particle Inductively Coupled Plasma Mass Spectrometry

uses the inherent sensitivity and elemental specificity of ICP-MS to detect pulses
of ions that result from the sequential introduction of NPs into the instrument
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Overview of spICP-MS Data Processing

e Calibration curve of

dissolved

concentration vs.

Intensity
*Use transport

efficiency to relate
Intensity to mass

* Nanoparticle gives
pulse of intensity above
background

« Convert pulse

Intensity to mass,

then to diameter

600

3 500
D
[
8 400
£
©
c
D 300
9
g
5 2004
(%]
3
< 1001

0 T

0 1
Conc. (ppb)

AUNP #1 (counts)

500
—AuNP #1

400

300

200

100

100
Time (sec)

200

Count

1/ AuNP #1

75 80 85 90 95 100 105 110 115 120 125
Size (D.nm)




Collection of
Single Particle
ICP-MS papers
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FFF

Field Elow Eractionation
uses an applied field (i.e., force) to separate particles based on particle mass,

hydrodynamic size, and/or density, depending on the type of field applied

Asymmetric Flow FFF (AF4) separates based on hydrodynamic size
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Centrifugal FFF (CFFF) separates based on buoyant mass

Source: www.postnova.com
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Challenge: We are not analyzing pristine NPs

NPs will likely be transformed from their pristine state
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Method Development with Model Particles

Environmentally Transformed NPs Model Particles
NP Dissolution A
Surface modified NPs
Ag shell
B
NP-Organic
Coatings/Heteroaggregates
C :

Au-PS-b-PAA



Transformation: Dissolution

e | |
ENP Stability Change(s) to ENP Track EN{’
Factors | | T ransformations

Mitrano et al., Environ Sci:Nano, 1, 248-259, 2014
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Transformation in natural waters

Trent University Lens Project (Chris Metcalf & Lindsay
Furtado)

Lake 239 at the Experimental Lakes Area (ELA) in Ontario,
Canada

Single addition of 80 mg/L, 50 nm PVP capped Ag ENP

Mesocosms (2 m diameter x 2m depth). Two used for in
study.

Samples analyzed by AF4-ICPMS and spICPMS

Furtado et al 2014, Environmental Chemistry 11, 419-430




Dissolution vs pulse intensity (splCP-MS)

Dissolution

100 nm tannic acid Ag NPs; 50 ng/L
Decrease pulse intensity correlates with decreasing
particle diameter Mitrano et al., Environ Sci:Nano, 1, 248-259, 2014



Surface Transformations: Investigation of NP Structure

Manufacturer-reported characteristics

Size by TEM. Concentrations by ICP-MS.

100.2 nm
hydrodynamic size
< >

48.2 nm
Au-core
8.8 nm thick
PVP-shell 17.2 nm Ag-shell
(76.8 nm equivalent 37
spherical diameter) 25 -
~ - e 20 -
82.7 nm NP 215 -
= 10 -~
What if this was an unknown particle? >
Can we determine composition and structure? o
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spICP-MS analysis

/_ spICP-MS: 197Au \ / spICP-MS: 197Ag \
_ = f JM -

H H
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2.0x1011 NPs/mL = 2.0x10 NPs/mL

Suggests but does not confirm bimetallic NP
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AF4-ICP-MS analysis
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Bimetallic particle is highly likely
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Investigation of NP Structure: Dissolution

Au-Ag NP dissolution in Milli-Q water and 1% (v/v) aqua regia was observed
using splCP-MS over 28 hours.

spICP-MS Au-Ag NP 1:10° dilution 2015
O MilliQ *'Au
----y=0.086x + 53.5, R = 0.904
A MilliQ *'Ag
®m 1% aqua regia “*’Au
A 1% aqua regia ‘“’Ag
——y =-9.65x + 69.5, R? = 0.999

ﬂn Milli-Q water, NP sizes arh

relatively constant.

In 1% aqua regia, Ag NP size
decreases from 0-3 hours, until
below size detection limit.
Au NP size is constant until

Core-shell structure is
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revealed.

8 hours.
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Heteroaggregation/Organic matter coatings

Model particle w .
. n:e

Polymer nanocomposite (PNC) is a
material with NPs dispersed in a
polymer (or copolymer) matrix.

Polymer

Au-PS-b-PAA Compsite NP: Use as a

Inorganic NP model for heteroaggregates and coated
NPs

One or more gold NPs (40-50 nm)

Source: surrounded by a thick polystyrene-
.fch.vutbr.cz/cs/laboratore/k ity/ : i
mpestoshtml e KomPOZEAnos polyacrylic acid block copolymer shell

(~10-175 nm)

Duncan, T.V. et al. ACS Appl. Mater. Interfaces, 2015 COLORADOSCHOOLOFMINESHEPI)
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Methodology

TEM spICP-MS AF4 CFFF
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Characterize Au-citrate Precursor NP

/ TEM \ / AF4 and CFFF \ / spICP-MS \

Mean size (nm)

TEM =51
AF4=459+1.2
CFFF =414
SpPICP-MS =41.9+0.2

COLORADOSCHOOLOFMINES

' EARTH @ ENERGY @ ENVIRONMENT



Au-PS-b-PAA NP: spICP-MS
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Au-PS-b-PAA NP AF4 Separation

AF4 separates by hydrodynamic size

Diameter (nm, UV-vis) Fractions were collected and
0 300 400 500 600 700 800
: T analyzed by spICP-MS to
nm - . . . .
. 500) 600 700 provide the mass distribution of
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x 251 —Ilepms 121415 17 < hydrodynamic size increases
g — UV-vis 7/14/15 g
3 Collected Fractions <
© 2.0+ 1018 O
1\2 ] Eg
i \ i
© 157 'w {016 & _ _
& *‘ T A particle with a small
8 1o 014% hydrodynamic size has a limit on
o | V\W = the maximum possible
4 05 MM 2 incorporated Au mass.
= RN sl 1012 3
0.0-F

Time (minutes)

COLORADOSCHOOLOFMINES
) EARTH @ ENERGY @ ENVIRONMENT



AF4 Fractions by splICP-MS

n =950 n=5100 n = 3500 n = 1500
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As the hydrodynamic size increases:
* Frequency of larger Au mass increases
* 9% containing 1-2 Au NPs decreases
* % containing = 8 NPs NPs increases
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Au-PS-b-PAA NP CFFF Separation

AF4 separates by buoyant mass
By matching the density of the CFFF carrier fluid with the PS-b-PAA density,
the buoyant mass is only the incorporated Au NP mass

Calculated from FFF data
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CFFF Fractions by splICP-MS

n=5300 n=5600 n=6000 | n=5700

| i
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CFFF 10 CFFF 15 CFFF 20 CFFF 25 AF4
(27-30 min)  (42-45min) (57-60 min) | (72-75 min) | 48-50 min

CFFF Fraction AF4 Fraction

The Au mass distribution shifts to
larger Au masses with increased
retention time.
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Little or no detection of single Au
NPs at longer retention time

Normalized NP Frequency
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Information gained from various methods

TEM SpICP-MS AF4 CFFF
structure and mass and hydrodynamic

: : buoyant mass
size number conc. size

| | | |

The maximum
Composite Multiple Au-cit number of
particles NPs are incorporated
containing = 1 incorporated Au-cit NPs
Au NPs are into the increases as
present. composite NPs. hydrodynamic
Size increases.

The Au mass
distribution
shifts to higher

masses as
CFFF retention
time increases.
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Summary

- Combining splCP-MS with FFF provides a detailed
characterization of complex nanomaterials and NP
mixtures

- Combined with dissolution methods they can reveal
structure

- The methods can provide insight into the transformations
and fate of NPs introduced into the environment

- Further work on method development is needed to fully
Investigate NPs in environmental samples
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