

Thermo Fisher S C I E N T I F I C

Meeting the demands of the EU Water Framework Directive for trace element analysis

Simon Nelms, Regional Marketing Manager, TEA, EMEA simon.nelms@thermofisher.com

Overview

- What is the EU Water Framework Directive (EU WFD)?
- Why has this legislation been developed?
- Environmental quality standards and the EU WFD
- What trace element levels need to be measured and in what samples?
- What techniques are available to make the measurements?
- Speciation and the WFD
 - What is speciation?
 - Principle steps of speciation analysis
- Application examples
 - Application 1: Multi-element analysis in drinking water using ICP-MS
 - Application 2: Chromium speciation in drinking water using IC-ICP-MS
- Resources available for learning more about trace element analysis and the WFD

What is the Water Framework Directive?

- The Water Framework Directive (Directive 2000/60/EC of the European Parliament and of the Council, implemented on 22nd December 2000) is a European Union (EU) directive which commits EU member states to:
 - Achieve good qualitative and quantitative status of all water bodies (including marine waters up to one nautical mile from shore) by 2015
 - It prescribes steps to reach the common goal, rather than adopting a limit value approach
 - In 2013, Directive 2013/39/EU was issued as an amendment to the WFD and to the intermediate Directive 2008/105/EC. This Directive defines the priority substances and their required limits

Why has this legislation been developed?

- To establish a legal framework to protect and restore clean water across Europe and ensure its long-term, sustainable use.
- Based on river basin districts.
- Many river basins cover more than a single country
- Where this is the case, cooperation between member states is required to ensure the quality of the river basin
- For individual water bodies, the directive defines:
 - Good ecological status
 - Good chemical status

Environmental quality standards and the WFD

- EU WFD amended, together with the Directive on Environmental Quality Standards (2008/105/EC), by the Priority Substances Directive (2013/39/EU)
 - Good chemical status defined by environmental quality standards (EQSs)
 - EQSs are now set in the Priority Substances Directive
- Three different Environmental Quality Standards (EQSs)
 - AA-EQS: Annual Average
 - MAC-EQS: Maximum Allowable Concentration
 - Biota EQS: set primarily in fish, although some are in crustaceans and molluscs
 - Where prescribed, biota-EQS take precedence over water concentrations

What trace element levels need to be measured and in what samples?

Priority Hazardous Substance (PHS) metals and Specific Pollutants

	Hardness	Annual Av	Maximum	
Element	as CaCO ₃ (where applicable)	All inland surface waters (µg/l)	All other surface waters (µg/l)	Allowable Concentration (MAC) (µg/l)
	0 – 40	<0.08		<0.45
	40 – 50	0.08		0.45
Cd (PHS)	50 – 100	0.09	0.2	0.6
	100 – 200	0.15		0.9
	>200	0.25		1.5
Hg (PHS)	n/a	0.0	05	0.07
Ni	n/a	4	8.6	34
Pb	n/a	1.2	1.3	14

	Hardness	Annual Average (AA)			
Element	as CaCO ₃ (where applicable)	Rivers and fresh water lakes (µg/l)	Transitional and coastal waters (µg/l)		
As	n/a	50	25		
Cr III	n/a	4.7	n/a		
Cr VI	n/a	3.4	0.6		
	0-50	1			
Cu	50-100	6			
	100-250	10	5		
	>250	28			
Fe	n/a	1000	1000		
	0-50	8			
Zn	50-100	50	40		
	100-250	75	40		
	>250	125			

What techniques are available to make the measurements?

Atomic absorption spectrometry (AA)

Flame AA

Graphite furnace AA

Inductively coupled plasma – optical emission spectrometry (ICP-OES)

Axial / radial view ICP-OES

Inductively coupled plasma – mass spectrometry (ICP-MS)

Quadrupole ICP-MS

High resolution ICP-MS

Increasing performance and investment, decreasing detection limit capability

Speciation and the EU WFD

Tributyltin and Cr(III)/Cr(VI) are specified in the EU WFD. Tributyltin can be measured using GC-MS or GC-ICP-MS, Cr(III)/Cr(VI) can be measured colorimetrically, but IC-ICP-MS is more sensitive and accurate

SPECIES SEPARATION

Liquid Chromatography (Ion Chromatography or HPLC)

Gas Chromatography

DETECTION

ICP-MS

Tributyltin species species - GC-ICP-MS

Cr(III) and Cr(VI) species - IC-ICP-MS

What is speciation?

- Definition 'the analytical activity of identifying and/or measuring the quantities of one or more individual chemical species in a sample' IUPAC
- That means chemical species of an element are determined rather than the total element concentration

Example – Arsenobetaine and As (III) species separated by ion chromatography (IC) and

detected by ICP-MS

Arsenobetaine (AsB)

As (III)

 Speciation analysis is important as it reveals valuable information about elemental bioavailability, mobility, metabolism and toxicity

Dimethylarsinic acid (DMA) and

Extraction

Separation

Detection

Sample containing various compounds

✓ Preservation of original species distribution

Challenges:

- Loss of species during sample preparation
- Transformation of species

Different separation mechanisms

Chromatography:

Analyte retention is achieved by interaction of charges (IC) or molecules (LC, GC) with stationary phase, separation by passage of mobile phase through the column

ICP-MS detects the element enclosed in a species

Accurate and reliable quantification of different compounds containing the same element

Application 1: Multi-element analysis in drinking water using ICP-MS

- Tap water samples collected in an HDPE tank, acidified to 1% v/v HNO₃
- Standards and quality control (QC) solutions prepared according to the requirements of EPA 200.8
- 320 tap water samples analyzed according to method EPA 200.8, with a Continuing Calibration Verification (CCV) QC sample and a Laboratory Fortified Blank (LFB) analyzed every 10 samples
- ⁶Li, ⁴⁵Sc, ⁷¹Ga, ⁸⁹Y, ¹¹⁵In and ¹⁵⁹Tb internal standards used, added on-line
- Au added to all blanks, standards and samples at 100 μg/L to aid Hg washout
- ICP-MS coupled with an auto-dilution system and an autosampler; autodilution sample loop volume = 1.5 mL
- Thermo Scientific™ iCAP™ RQ ICP-MS used. Operated in KED collision cell mode for all analytes, using pure He cell gas
- Analysis time = 66 s per sample

Data collection and autodilution control

- Thermo Scientific™ Qtegra™ Intelligent Scientific Data Solution™ (ISDS) software used for quantitative evaluation of the data
- Pre-defined EPA 200.8 method template employed user only needs to enter the number of samples to be analyzed
- All parameters required to comply with EPA 200.8 automatically checked
- Samples that do not meet all criteria, e.g. internal standard recovery or over-range analyte concentrations, automatically diluted to an appropriate level as calculated or defined within the software and the measurement automatically repeated

Autodilution process

Auto-dilution system – principle of operation

- Elemental Scientific prepFAST used
- It is a dual FAST valve system:
 - Samples are loaded on to the loop in the first valve where syringe pumps accurately dilute / add internal standard to the sample
 - Dilution factors of up to 400x can be accurately and reproducibly applied
 - The diluted sample is then passed to the second loop for FAST valve transfer to the ICP-MS
 - Single standalone system, ICP-MS supplier independent
- Control of the prep*FAST* is provided in the ICP-MS's software

Qtegra ISDS prepFAST auto-dilution capabilities

- Qtegra ISDS Software provides complete software control of the prepFAST
- Automated *prescriptive* dilution for preparation of:
 - Samples
 - Standards
- Automated *intelligent* dilution:
 - Over calibration range auto-dilution
 - Internal standard range auto-dilution

Standard preparation using auto-dilution

- A single standard stock (Rack 3, Vial 2) is used to generate a 10 point calibration (from 0.01 to 4 ppb) with dilution factors from 1 to 400
- Dual stocks can be used to extend automated calibration ranges even further

2	Label ⊽₽	Sample Type ▽中	Standard ▽+	Rack ⊽⊅	Vial ⊽≄	prepFAST DF ▽+
1	Blank	AVERAGE BLK		3	1	1
2	Blank	AVERAGE BLK		3	1	1
3	Blank	AVERAGE BLK		3	1	1
4	0.010 ppb	STD	4 ppb Stock	3	2	400
5	0.013 ppb	STD	4 ppb Stock	3	2	300
6	0.020 ppb	STD	4 ppb Stock	3	2	200
7	0.040 ppb	STD	4 ppb Stock	3	2	100
8	0.080 ppb	STD	4 ppb Stock	3	2	50
9	0.160 ppb	STD	4 ppb Stock	3	2	25
10	0.4 ppb	STD	4 ppb Stock	3	2	10
11	0.8 ppb	STD	4 ppb Stock	3	2	5
12	2 ppb	STD	4 ppb Stock	3	2	2
13	4 ppb	STD	4 ppb Stock	3	2	1

Advanced auto-dilution: Calibration over-range

- The user defines:
 - The maximum allowed over-range limit as a percentage of the top calibration standard, e.g. 110%
 - The target concentration of the analyte after auto-dilution, e.g. 60%
 - Everything else is done by the software

Original measured result – above the top calibration standard (over-range)

- When an analyte exceeds the calibration range, intelligent auto-dilution calculates the required dilution factor as defined by the criteria in the software
- Then dilutes the sample and re-measures only the affected analytes, without manual interaction

Advanced auto-dilution: Internal standard recovery

- The user defines:
 - The range of acceptable internal standard recovery, e.g. 80 - 125%
 - The autodilution factor step and maximum number of dilutions before moving on to the next sample
 - Everything else is done by the software

l é	Ť	No	Time	Sample Type	∇	Label ▽	89Y	Ф	115ln 中	175Lu +⊐
•		2	6/17/2014 7:37:54 PM	BLK			100.0	%	100.0%	100.0%
•		3	6/17/2014 7:39:10 PM	STD						
•		22	6/17/2014 8:00:57 PM	UNKNOWN		3% NaCl + 10 ppb Spike	13.5	%	10.2%	7.1%
•		23	6/17/2014 8:01:46 PM	UNKNOWN		3% NaCl + 10 ppb Spike	76.0	%	68.2%	62.8%
•		26	6/17/2014 8:04:32 PM	UNKNOWN		3% NaCl + 10 ppb Spike	90.9	%	84.7%	85.2%

A sample of 3% NaCl is analyzed directly The 3% NaCl sample is automatically diluted until the Internal Standard Recovery is within the defined limits

Improved internal standard recovery with intelligent dilution using autodilution

Practical example of autodilution - analysis of variable matrix saline samples

- A close look at sample 24
 - > 8 % NaCl in this sample!
 - Required internal standard recovery was 85-125%
 - Prescriptive dilution (PD) at 40 fold
 - Autodilution (AD) steps:
 - $1 \rightarrow$ autodilution to 50 fold
 - 2 → autodilution to 60 fold
 - $3 \rightarrow$ autodilution to 70 fold
 - After the 3rd dilution, the internal standard recovery is within the specified range → analysis can continue

Method detection limits (MDL's) vs required annual average maximum concentration

Element	Isotope	MDL (μg/L)	Required annual average maximum concentration (µg/L)	
As	75	0.011	25 - 50	
Cd	111	0.017	< 0.08 – 0.25	
Cr	52	0.022	Cr(III): 4.7, Cr (VI): 0.6 – 3.4	
Cu	63	0.119	1 - 28	
Fe	56	0.125	1000	
Hg	202	0.110	0.05	
Ni	60	0.075	4.0 – 8.6	
Pb	206+207+208	0.007	1.2 – 1.3	
Zn	66	0.175	8 - 125	

- During the analysis run, a Laboratory Fortified Blank (LFB) QC sample was analyzed a total of 32 times
- Spike level of the LFB = 5x the estimated detection limit for each analyte
- Average value of the LFB results determined together with the standard deviation
- MDL's shown above calculated as 3.14 x the standard deviation, all except Hg lower than the required limit
- Hg exceeded required detection limit due to memory effects, even with Au added to improve washout. Likely that a dedicated Hg analysis would be required to routinely achieve the required detection limit

Average recovery and stability of the continuous calibration QC samples over the run

- Continuing Calibration Verification (CCV) QC sample analyzed every 10 samples
- Total number of CCV QC analyses = 32
- EPA 200.8 requires that this QC must be within +/- 10% or within the acceptance limits of the method (EPA 200.8, rev 5.5)
- All elements found to be accurate to within \pm 10% of the known concentration, as well as the acceptance criteria and were stable over the whole run

Average recovery and stability of the laboratory fortified blank QC samples over the run

- During the analysis run, a Laboratory Fortified Blank (LFB) QC sample was analyzed every 10 samples
- Total number of LFB QC analyses = 32
- All elements spiked at 5 μg/L except Fe, Zn, Cu and Ba (50 μg/L) and Hg (1 μg/L)
- EPA 200.8 requires that this QC must provide recoveries of 85 to 115%; all elements met this criteria throughout the whole run

Application 2: Chromium speciation in drinking water using IC-ICP-MS

- Thermo Scientific ™ Dionex™ ICS-5000+ Capillary HPIC™ coupled to an iCAP RQ ICP-MS
- Cr(III) and Cr(VI) mixed calibration standards prepared from blank to 15 ng/g
- Detection limit determined for each species
- Spike recovery in a tap water matrix evaluated
- Local (Bremen) potable water sample measured
- All data collected and processed using Qtegra ISDS software with an integrated Chromeleon plug-in
- The Chromeleon plug-in allowed control of the ICS-5000 and configuration of the IC method directly from Qtegra

Operating conditions and chromatography performance

ICP-MS

Parameter	Value
Forward power	1550 W
Nebulizer gas	0.80 L/min
Injector	2 mm I.D.
Cell gas flow / KED voltage	4.8 mL/min He / 2V
Dwell time	100 ms

Ion Chromatograph

Column	Dionex AG-7 (2 mm i. D., 50 mm length)
Elution	Isocratic
Mobile phase	0.4 mol/L HNO ₃
Flow rate	400 μL/min
Injection volume	20 μL
Duration	150 s

Cr species calibration

- Good linearity obtained
- Detection sensitivity determined to be 220 kcps / ng/g for both Cr species
- Proves that Cr(VI) stability is unaffected by the 0.4 mmol/L HNO₃ matrix used
- <0.5 pg/g detection limits achieved for both species
- Lowest level required for EU WFD
 = 600 pg/g for Cr(VI) in transitional
 and coastal waters

Cr(III) and Cr(VI) spike recovery results

- Mixtures of both Cr species were quantified against the calibrations in a spike recovery test
- Three spike levels tested:
 - 2.34 ng/g of each species
 - 6.03 ng/g Cr(VI) and 1.90 ng/g Cr(III)
 - 1.87 ng/g Cr(VI) and 6.20 ng/g Cr(III)
- Each sample analyzed in triplicate; quantitative recoveries obtained for both species in all samples

Conc. spiked [ng/g]	Cr (VI)		Cr (III)		
	Found (ng/g)	Recovery (%)	Found (ng/g)	Recovery (%)	
2.34 of each	2.31 ± 0.01	99 ± 1	2.35 ± 0.02	100 ± 1	
6.03 Cr (VI); 1.90 Cr (III)	6.01 ± 0.02	100 ± 1	2.00 ± 0.01	105 ± 1	
1.87 Cr (VI); 6.20 Cr (III)	1.85 ± 0.01	99 ± 1	6.15 ± 0.03	99 ± 1	

Analysis of a local (Bremen) potable water sample

Species	Measured concentration (pg/g))
Cr (III)	not detected
Cr (VI)	42.5 ± 1

Conclusions

- Quadrupole ICP-MS shown to meet the requirements of the EU
 Water Framework Directive for all the specified elements, except Hg
 - The required maximum annual average concentration for Hg (0.05 μ g/L) is challenging due to memory effects even with Au added to improve washout
 - Dedicated separate analysis required to routinely achieve the required Hg level
- IC-ICP-MS shown to be effective for the speciation of Cr(III) and Cr(VI) in water samples at the levels required for the EU WFD

Available environmental analysis application notes and resources

To learn more about our solutions for the EU WFD, go to <u>thermofisher.com</u> and search for Water Framework Directive

To download our application notes go to thermofisher.com and search for iCAP RQ application notes

